This version of DeepLIFT has been tested with Keras 2.2.4 & tensorflow 1.14.0. See this FAQ question for information on other implementations of DeepLIFT that may work with different versions of tensorflow/pytorch, as well as a wider range of architectures. See the tags for older versions.
This repository implements the methods in “Learning Important Features Through Propagating Activation Differences” by Shrikumar, Greenside & Kundaje, as well as other commonly-used methods such as gradients, gradient-times-input (equivalent to a version of Layerwise Relevance Propagation for ReLU networks), guided backprop and integrated gradients.